Pariah Pack II

Razgriz III

Snake Anatomy

Snakes are elongate, legless, carnivorous reptiles of the suborder Serpentes that can be distinguished from legless lizards by their lack of eyelids and external ears. Living snakes are found on every continent except Antarctica, in the Pacific and Indian Oceans, and on most smaller land masses — exceptions include some large islands, such as Ireland and New Zealand, and many small islands of the Atlantic and central Pacific. More than 20 families are currently recognized, comprising about 500 genera and about 3,400 species.


General Information on the Snake

The now extinct Titanoboa cerrejonensis snakes found were 12–15 meters in length. By comparison, the largest extant snakes are the reticulated python, which measures about 9 meters long, and the anaconda, which measures about 7.5 meters long and is considered the heaviest snake on Earth.

At the other end of the scale, the smallest extant snake is Leptotyphlops carlae, with a length of about 10 centimeters. Most snakes are fairly small animals, approximately 1 meter in length.



Snakes use smell to track their prey. They smell by using their forked tongues to collect airborne particles, then passing them to the Jacobson's organ in the mouth for examination. The fork in the tongue gives snakes a sort of directional sense of smell and taste simultaneously. They keep their tongues constantly in motion, sampling particles from the air, ground, and water, analyzing the chemicals found, and determining the presence of prey or predators in the local environment. In water-dwelling snakes, such as the Anaconda, the tongue functions efficiently under water.


Snake vision varies greatly, from only being able to distinguish light from dark to keen eyesight, but the main trend is that their vision is adequate although not sharp, and allows them to track movements. Generally, vision is best in arboreal snakes and weakest in burrowing snakes. Some snakes, such as the Asian vine snake have binocular vision, with both eyes capable of focusing on the same point. Most snakes focus by moving the lens back and forth in relation to the retina.

Infrared sensitivity

Pit vipers, pythons, and some boas have infrared-sensitive receptors in deep grooves on the snout, which allow them to “see” the radiated heat of warm-blooded prey mammals. In pit vipers the grooves are located between the nostril and the eye, in a large “pit” on each side of the head. Other infrared-sensitive snakes have multiple, smaller labial pits lining the upper lip, just below the nostrils.

Vibration sensitivity

The part of the body in direct contact with the ground is very sensitive to vibration; thus, a snake can sense other animals approaching by detecting faint vibrations in the air and on the ground.


The skin of a snake is covered in scales. Contrary to the popular notion of snakes being slimy because of possible confusion of snakes with worms, snakeskin has a smooth, dry texture. Most snakes use specialized belly scales to travel, gripping surfaces. The body scales may be smooth, keeled, or granular. The eyelids of a snake are transparent “spectacle” scales, which remain permanently closed, also known as brille.

The shedding of scales is called ecdysis (or in normal usage, molting or sloughing). In the case of snakes, the complete outer layer of skin is shed in one layer. Snake scales are not discrete, but extensions of the epidermis—hence they are not shed separately but as a complete outer layer during each molt, akin to a sock being turned inside out.

The shape and number of scales on the head, back, and belly are often characteristic and used for taxonomic purposes. Scales are named mainly according to their positions on the body. In "advanced" snakes, the broad belly scales and rows of dorsal scales correspond to the vertebrae, allowing scientists to count the vertebrae without dissection.

Snakes' eyes are covered by their clear scales (the brille) rather than movable eyelids. Their eyes are always open, and for sleeping, the retina can be closed or the face buried among the folds of the body.

Skeleton and Muscles

The skeleton of most snakes consists solely of the skull, hyoid, vertebral column, and ribs, though henophidian snakes retain vestiges of the pelvis and rear limbs.

The skull of the snake consists of a solid and complete braincase, to which many of the other bones are only loosely attached, particularly the highly mobile jaw bones, which facilitate manipulation and ingestion of large prey items. The left and right sides of the lower jaw are joined only by a flexible ligament at the anterior tips, allowing them to separate widely, while the posterior end of the lower jaw bones articulate with a quadrate bone, allowing further mobility. The bones of the mandible and quadrate bones can also pick up ground borne vibrations. Because the sides of the jaw can move independently of one another, snakes resting their jaws on a surface have sensitive stereo hearing which can detect the position of prey.

The hyoid is a small bone located posterior and ventral to the skull, in the 'neck' region, which serves as an attachment for muscles of the snake's tongue, as it does in all other tetrapods.

The vertebral column consists of anywhere between 200 to 400 (or more) vertebrae. Tail vertebrae are comparatively few in number (often less than 20% of the total) and lack ribs, while body vertebrae each have two ribs articulating with them. The vertebrae have projections that allow for strong muscle attachment enabling locomotion without limbs.


Cobras, vipers, and closely related species use venom to immobilize or kill their prey. The venom is modified saliva, delivered through fangs. The fangs of 'advanced' venomous snakes like viperids and elapids are hollow to inject venom more effectively, while the fangs of rear-fanged snakes such as the boomslang merely have a groove on the posterior edge to channel venom into the wound. Snake venoms are often prey specific—their role in self-defense is secondary.

Venom, like all salivary secretions, initiates the breakdown of food into soluble compounds, facilitating proper digestion. Even nonvenomous snake bites (like any animal bite) will cause tissue damage.

Behaviour (Reproductive, Feeding)


Although a wide range of reproductive modes are used by snakes, all snakes employ internal fertilization. This is accomplished by means of paired, forked hemipenes, which are stored, inverted, in the male's tail.

Most species of snakes lay eggs, but most snakes abandon the eggs shortly after laying. However, a few species (such as the King cobra) actually construct nests and stay in the vicinity of the hatchlings after incubation. Most pythons coil around their egg-clutches and remain with them until they hatch. A female python will not leave the eggs, except to occasionally bask in the sun or drink water. She will even “shiver” to generate heat to incubate the eggs.




All snakes are strictly carnivorous, eating small animals including lizards, other snakes, small mammals, birds, eggs, fish, snails or insects. Because snakes cannot bite or tear their food to pieces, they must swallow prey whole. The body size of a snake has a major influence on its eating habits. Smaller snakes eat smaller prey. Juvenile pythons might start out feeding on lizards or mice and graduate to small deer or antelope as an adult, for example.

Some snakes have a venomous bite, which they use to kill their prey before eating it. Other snakes kill their prey by constriction. Still others swallow their prey whole and alive.

Upcoming Events

Thursday, Aug 10 All Day
Monday, Aug 21 at 5:50 PM - 9:02 PM
Sunday, Sep 24 All Day
Sunday, Oct 15 All Day

Recent Videos

293 views - 0 comments
201 views - 1 comment
132 views - 0 comments